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Abstract

Heat shock proteins (HSPs) belong to the family of conservative polypeptides with a high homology 
of the primary structure. The uniqueness of this family lies in their ability to interact with a large number 
of different proteins and provide protection from cellular and environmental stress factors as molecular 
chaperones to keep protein homeostasis. While intracellular HSPs play a mainly protective role, extra-
cellular or membrane-bound HSPs mediate immunological functions and immunomodulatory activity.  
In immune system are subsets of cells including regulatory T cells (Tregs) with suppressive functions.  
HSPs are implicated in the function of innate and adaptive immune systems, stimulate T lymphocyte pro-
liferation and immunomodulatory functions, increase the effectiveness of cross-presentation of antigens, 
and induce the secretion of cytokines. HSPs are also important in the induction, proliferation, suppressive 
function, and cytokine production of Tregs, which are a subset of CD4+ T cells maintaining peripheral tol-
erance. Together HSPs and Tregs are potential tools for future clinical interventions in autoimmune disease. 
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Introduction
Heat shock proteins (HSPs) belong to the family of 

conservative polypeptides with a high homology of the pri-
mary structure in both Procaryota and Eucaryota. They 
are classified into five families according to their molec-
ular weight: HSPH (HSP110), HSPC (HSP90), HSPA 
(HSP70), HSPD (HSP60/GroEL), and DNAJ (HSP40), 
as well as human chaperonin families HSPD/E (HSP60/
HSP10) and CCT (TRiC), and small – HSPB [1]. HSPs 
are mainly intracellular, although they may also be secret-
ed into extracellular space. The uniqueness of this family 
results from their ability to interact with a large number of 
different proteins, called substrates or clients. HSPs pro-
vide protection from cellular and environmental stress fac-
tors as molecular chaperones to keep protein homeostasis 
(proteostasis). HSPs constitute a high proportion (5-10%) 
of cellular proteins under steady state, and their intracellu-
lar concentration may rise even several times under stress 
conditions, when the formation of misfolded proteins 
or aggregates occurs. The stressors, such as heat shock, 
oxidation, viral infection, nitric oxide (NO), UV, etha-
nol, heavy metal ions, pro-inflammatory factors (TNF-α, 
IFN-γ), or non-steroidal anti-inflammatory drugs (e.g. ibu-
profen), stimulate various HSPs, which inhibit or diminish 

the effects of these stress factors. In addition, HSPs play an 
essential role in physiological processes such as: folding of 
nascent and stress-accumulated protein-substrate assembly, 
prevention of the aggregation of these proteins, transport 
across membranes, and the degradation of other proteins 
[1-4]. While intracellular HSPs mainly play a protective 
role, extracellular or receptor-bound HSPs mediate immu-
nological functions and immunomodulatory activity. This 
paper shows the role of HSPs in the functionality of the 
immune system, particularly regulatory T cells (Tregs).

Tregs constitute about 2-10% of peripheral CD4+  
T cells in healthy humans and are responsible for the main-
tenance of peripheral tolerance and suppression of exacer-
bated immune responses. Currently, based on their site of 
development, Tregs are divided into: 1) thymus derived 
Tregs, natural Tregs (nTregs), 2) peripherally induced 
pTregs, and 3) in vitro induced iTregs. tTregs and pTregs 
are characterised by expression of transcription factor 
Foxp3, which is called the master regulator of Tregs func-
tion and is necessary for their development and suppres-
sive capabilities [5]. Tregs are characterised also by the 
constitutive expression of several other markers: the glu-
cocorticoid-induced TNF receptor family-related protein 
(GITR) [6], OX40 (CD134) [7], and cytotoxic T lympho-
cyte antigen-4 CTLA4 (CD152) [8], but these markers are 
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expressed also by other subsets. Basic suppressive mecha-
nisms used by Tregs are: 
1) secretion of anti-inflammatory cytokines such as: trans-

forming growth factor beta (TGF-β), interleukin (IL) 10, 
and IL-35 [6], 

2) killing of target cells in granzyme and perforin dependent 
fashion [9], 

3) suppression of dendritic cell (DC) maturation, 
4) induction of indoleamine 2,3-dioxygenase (IDO) expres-

sion in DCs in CTLA-4 (cytotoxic T lymphocyte anti-
gen-4)-CD80/CD86-dependent fashion that suppresses 
both T helper (Th) and cytotoxic (Tc) conventional lym-
phocytes converting tryptophan into proapoptotic metab-
olites [8], 

5) deprivation of other T cells of IL-2 due to high consump-
tion of this cytokine (high expression of IL-2 receptor), 

6) expression of CD39 and CD73 that are ecto-enzymes that 
dephosphorylate adenosine triphosphate (ATP) into ade-
nosine diphosphate (ADP) and adenosine monophosphate 
(AMP) (CD39), and then into adenosine (CD73), leading 
to inhibition of the immune response [8, 10, 11], and 

7) transfer of a potent inhibitory second messenger such 
as cyclic adenosine monophosphate (cAMP) via mem-
brane gap junctions of effector T cells (Teffs) [8]. Inter-
estingly, suppressive activity of Tregs is also controlled. 
For example, when effector T cells are stimulated via 
TCR receptor, IL-6, high doses of IL-2 and expression 
of GITR on Tregs surfaces render effectors resistant to 
Treg-mediated suppression. Tregs can be inhibited when 
activation of TLR4 and TLR9 on APCs occurs because it 
induces the secretion of inflammatory cytokines (as IL-6 
and TNF-α) [12, 13].

Significance of heat shock proteins  
for the function and homeostasis  
of the immune system

HSPs are implicated in innate and adaptive immune 
systems. They can stimulate dendritic cells (DCs), NK 
cells, and macrophages [14]. Both autologous and recom-
binant HSPs stimulate T lymphocyte proliferation and 
immunomodulatory functions [15, 16]. HSPs increase the 
effectiveness of cross-presentation of antigens by APCs in 
the context of major histocompatibility complex class one 
(MHC I). HSP receptor CD91 is required in this process 
and increases T-cell-mediated responses related to Th1, 
Th2, and Tregs [17]. HSPs may induce the secretion of 
pro- or anti-inflammatory cytokines and are responsible 
for monitoring the immune response [18, 19]. Extracel-
lular HSPs have cytokine-related properties necessary for 
immune response acting via the association with pattern 
recognition receptors (PRR) including toll-like receptors 
(TLRs) and CD14 [4, 20], and thus affect the release of 
cytokines such as TNF-α, IL-1β, IL-6, IL-12, and granu-

locyte-macrophage colony-stimulating factor (GM-CSF). 
Further increased levels of extracellular stress and located 
in the cell membrane protein HSPA induction correlates 
with apoptosis that precedes the activation of receptors 
on the surface of NK cells, and antigen presentation by 
GRP94/96, which initiates a response CTL/CD8+ [15].

Small HSPs (HSPB)

sHSPs oligomers were found to protect cells from oxida-
tive stress, heat, and inhibit apoptosis. One of these chaper-
onins is HSPB1 (HSP27), which was identified as a protein 
with high homology with the eye lens α-crystallin (HSPB4 
and HSPB5) protein [2]. The phosphorylation of HSPB1 
regulates its interaction with other proteins. In neutrophils, 
unphosphorylated HSPB1 creates complex with kinase AKT 
(protein kinase B) and MAPKAP (mitogen-activated pro-
tein kinase-activated protein) kinase 2 that prevents consti-
tutive neutrophil apoptosis and promotes an inflammatory 
response. While after phosphorylation HSPB1 dissociates 
from AKT disrupting the signalling complex and promoting 
neutrophil apoptosis. HSPB1 also stimulates the production 
of IL-10 in monocytes and thus can suppress the immune 
response. Extracellular HSPB1 inhibits the differentiation 
of monocytes towards macrophages and dendritic cells and 
blocks their maturation. In addition, extracellular HSPB1 
was found to induce T-cell anergy and to secrete anti-inflam- 
matory mediators [21].

DNAJ (HSP40)

DNAJ is called a co-chaperone because it acts in 
a complex with HSP70. DNAJ was found to bind damaged 
polypeptides and then facilitate their binding with HSPA 
[22]. It has been shown that bacterial and human extracel-
lular DNAJ inhibits proliferation of autoreactive T cells 
and induces the expression of IL-10 in peripheral blood 
mononuclear cells (PBMC) from patients with rheumatoid 
arthritis (RA) [23]. A clinical trial with a dnaJ peptide was 
done in RA as a pilot phase II. dnaJ was safe and well-tol-
erated. In this way significant reduction in the percentage 
of T cells producing TNF-α and increased percentage of 
T cells producing IL-10 were observed. This immunisation 
leads to immune deviation and clinical efficacy [24-28].

HSPD (HSP60)

HSPD seems to be a link between innate and adaptive 
immunity because it was shown to stimulate production of 
proinflammatory cytokines and other proteins involved in 
inflammation [23]. In culture of PBMC it was observed 
that CD14 receptor bounded HSPD and activated human 
PBMC, as well as monocyte-derived macrophages. It was 
also reported that HSPD protein acts via TLR2, TLR4, and 
CD40 inducing production of Th-1 cytokines and increas-
ing adhesion to extracellular matrix. It was also shown that 
during cellular stress HSPD protein was presented to CD8+ 
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cells and CD4+ cells, in the context of MHC class I and 
MHC class II receptors, respectively [24-27]. Mycobacte-
rial HSPD (65-kD) activates monocytes to synthesise and 
secrete proinflammatory cytokines (IL-6, IL-8 and TNF) 
[28] and nitric oxide. HSPD also stimulates IL-6 [29],  
IL-12, and IL-15 production by antigen-presenting cells and 
together with IFN-γ activates macrophages. In addition, the 
protein was shown to enhance antigen-specific IFN-γ se-
cretion and CD69 expression on CD4+ T cells after primary 
stimulation [30]. 

Nevertheless, current observations suggest that the re-
sults of experiments where recombinant HSPs were used 
should be reconsidered. It was proven that production of 
recombinant HSPs in microbial expression systems is com-
monly associated with contamination with microbial prod-
ucts. Therefore, proinflammatory effects observed after HSP 
administration might have been mistakenly interpreted as bi-
ological action of HSP itself, while in fact they resulted from 
bacterial impurities that were also recognised by TLRs [31].

These problems deserves more attention, especially since 
current studies underline the immunoregulatory properties 
of HSPD. It has been shown that stimulation of human cord 
blood mononuclear cells (CBMC) with HSPD induced dif-
ferentiation and proliferation of IL-10 and IFN-γ producing  
T CD4+ cells that expressed a Treg marker – FoxP3 pheno-
type. Nevertheless, it has been reported that proinflammatory 
activity could be caused by DAMPs (damage-associated mo-
lecular patterns) – molecules produced under stressful con-
ditions. The effect of recombinant HSP was misinterpreted  
as pro-inflammatory. In fact, they were contaminated by pro-
teins from the bacteria producing them [32].

HSPA (HSP70)

The HSPA subfamily comprises eight proteins that 
have the highest evolutionary stability and high affinity to 
adenosine triphosphate (ATP) [33]. HSPAs are present in 
the cytosol, nucleus, mitochondria, and endoplasmic retic-
ulum. They can also be present in the intercellular space, 
where they are recognized and bound by different cell 
types, including NK cells, dendritic cells, macrophages, 
monocytes, and B cells using specific receptors (CD36, 
CD40) on all of these cells. Binding to these receptors, 
HSPA start a signal cascade leading to the synthesis and 
secretion of pro-inflammatory cytokines [34-36]. These 
proteins act also as messengers between innate and adap-
tive immunity [37-39]. HSPA proteins are capable of ac-
tivating immune cells such as macrophages, monocytes, 
dendritic cells, natural killer (NK), and T cells. This acti-
vation is exerted by direct interaction of the HSPA protein 
with subsequent surface receptors TLR2, TLR4, CD14, 
CD40, and CD91. HSPA protein can also be recognised 
by the TCR receptors during presentation with MHC 
molecules [40, 41]. Bausero et al. have shown that many 
tumour cell types exhibit increased HSPA protein exoso-

mal transport after treatment with IFN-γ. In this study, the 
serum of patients suffering from various cancer diseases 
and tumour cell cultures were found to contain high con-
centrations of HSPA proteins. Moreover, the results con-
firmed the finding that HSPA can be a membrane-bound 
protein in cancer cells, which was not observed in normal 
cells [42].

HSPC (HSP90)

So far, the best known representatives of HSPC are 
HSPC2 (HSP90α), HSPC3 (HSP90β), and HSPC4 
(GRP94/96) [43]. Stress induces expression of HSPC2, 
and its level correlates positively with the tumour pro-
gression. HSPC3 is involved in the proper functioning of 
the cells under physiological conditions, is responsible for 
the development and maturation of embryos and stabili-
sation of the cytoskeleton [44]. While HSPAs are mainly 
expressed in the endoplasmic reticulum and mitochondria, 
HSPC family members are predominantly expressed in the 
cytosol and nucleus [45, 46].

HSPs in antigen presentation
Many studies have shown an active role of chaper-

ones in the MHC class I pathway and also evidence that 
HSP-peptide complexes facilitate in vivo presentation of 
MHCII-restricted epitopes [47-50]. As was shown by Ra-
jagopal et al., HSPC enhanced MHC class II-mediated an-
tigen presentation because it was required for stable MHC 
class II heterodimer formation and persistence and for 
peptide loading on MHC class II. In case of MHC class I 
molecules the role of HSPC in antigen presentation de-
pends on cell lineage [51].

HSPs in autoimmune diseases
HSPs are involved in autoimmune reactions, which 

results from the so-called molecular mimicry, a phenom-
enon associated with the occurrence of origin similarities 
between exo- and endogenous molecules. People infect-
ed with bacteria can develop an immune response against 
HSPs of these bacteria, which is then directed against hu-
man homologues of these proteins. A typical example is 
RA, which is an autoimmune, systemic disease of connec-
tive tissue and one of the most frequent rheumatic diseases 
[52]. The development of response to HSPs is considered 
an early event in the pathogenesis of the disease. The pres-
ence of HSPs in the extracellular space, and the presence 
of anti-HSPs antibodies, was observed in patients with RA 
[53-55]. Moreover, immunisation of rats with recombinant 
HSPD was found to protect against rheumatic disease [3, 
56, 57]. T cells with regulatory functions primarily rec-
ognised HSPD epitopes in a highly conserved way. In-
terestingly, the transfer of these cells to the other animal 
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prone to rheumatic disease prevented the disease onset 
[28]. HSPA and HSPD have been shown to have immuno-
modulatory effects and stimulate anti-inflammatory Tregs 
when used to treat arthritis [2]. That is why there is an 
observed paradox in the influence of HSPs on the immune 
system: HSPs protect cells from inflammation (cytopro-
tection), but on the other hand – when the inflammation 
is established – they lead to cell death [58]. At this point 
the question arises whether the proinflammatory activity of 
HSPs is a part of their physiological role or is just an arte-
fact resulting from bacterial contamination of recombinant 
HSPs used in the experiments in vitro [35].

HSPs in other diseases

Ischaemia/reperfusion-induced acute kidney injury 
is another condition in which HSPs play an important 
role. Kim et al. tested renoprotective effects of HSPs us-
ing a mouse model with or without heat preconditioning. 
When T cells from heat-preconditioned mice were adop-
tively transferred to T cell–deficient nu/nu mice, they 
failed to reconstitute post-ischaemic injury. It was also ob-
served that the number of Tregs was increased in heat-pre-
conditioned ischaemic kidneys. HSPA was found to have 
a renoprotective effect, which may be partially mediated 
by a direct immunomodulatory effect exerted by Tregs. 
When Tregs were depleted before heat preconditioning, 
then the renoprotective effect was abolished. Transferring 
Tregs in quercetin-treated (quercetin is an HSPA inhibitor) 
heat-preconditioned mice partially restored the effect of 
heat preconditioning [59].

Moreover, HSPs also play a role in atherosclerosis, 
which is a chronic inflammatory process ongoing in the ar-
teries. More and more attention is being paid to the role of 
the immune system in the pathogenesis of atherosclerosis 
because CD4+ T-cells and macrophages were found to be 
involved in its development. HSPs released from damaged 
cells during inflammatory response are particularly import-
ant autoantigens, which are assigned to the development of 
atherosclerotic plaques [60, 61]. In an animal model, the 
presence of specific HSP60 was demonstrated in the spleen 
and lymph nodes in both B and T lymphocytes, which was 
suggested to confirm autoimmune stimulation by HSP60 
and indicate the role of HSP60 as a stimulator of the im-
mune system in the development of atherosclerosis [62-65].

Diabetes type 1 (DM1) is a multifactorial autoimmune 
disease with a genetic background. Autoimmune reaction 
is directly responsible for the development of DM1. In 
type 1 diabetes the patient’s immune cells destroy insu-
lin-producing β cells of pancreatic islets [66, 67]. HSP60 
is an autoantigen involved in type 1 diabetes pathogenesis, 
which was shown using non-obese diabetic (NOD) mice, 
and moreover they had autoreactive T cells specific to 
epitopes of HSPD, which were later identified as a β-cell 
target antigen [68, 69]. Therefore, an HSPD-based vac-

cine DiaPep277 was elaborated with the aim to protect  
β cells and prolong insulin secretion. The vaccine con-
tained a dominant epitope of HSPD, present in secretory 
granules of β cells, which has been suggested to induce 
Tregs and enhance their regulatory function [70-72]. In an-
imal studies, the peptide inhibited the destruction of β cells 
and preserved insulin production in NOD mice with new-
ly diagnosed diabetes. A phase II clinical study showed 
that the group treated with the vaccine had a higher level 
of C-peptide and lower insulin requirements, suggesting 
a protective effect of the peptide DiaPep2077 on β-cells 
[73-75].

The role of heat shock proteins  
in the function of regulatory T cells 

HSPs are necessary for the induction of T-cell phe-
notypes and are important in the induction, proliferation, 
suppressive function, and cytokine production of Tregs. 
HSPs induce regulatory T cells that have the capacity to 
suppress autoimmunity [76, 77]. 

DNAJ

Epitopes derived from human HSP40 can induce dif-
ferentiation and/or stimulate cell proliferation of human 
Tregs. In addition, in patients with juvenile idiopathic 
arthritis (JIA), DNAJ was found to improve suppressive 
function of Tregs in culture. Moreover, this study has 
shown also that DNAJ stimulates T cells for the produc-
tion of IL-10, and measured high serum levels of DNAJ 
correspond with milder course of the disease [76].

HSPD

These proteins act as co-stimulators of human Tregs 
and can downregulate adaptive immune responses by stim-
ulation of Tregs via TLR2 signalling. This resulted in the 
inhibition of target T cell proliferation, IFN-γ, and TNF-α 
secretion, as well as upregulation of IL-10 in activated 
CD4+ T cells. This co-stimulation led to activation of PKC, 
PI3K, and p38, and were further enhanced by inhibition of 
ERK [77]. HSPD enhanced regulatory T-cell suppression 
and proliferation via binding of TLR2 on the Treg surface 
[78, 79]. The level of CD30 expression in response to hu-
man HSPD correlated positively with the production of 
IL-10 and negatively with IFN-γ [80]. Immunomodulatory 
activity of HSPD manifests also as T-cell immobilisation 
through increased adhesion to fibronectin and reduced ex-
pression of chemokine receptors: CCR7 and CXCR4 [81]. 
HSPD also enhances the differentiation of CBMC into 
CD4+IL-10+Foxp3+ Tregs [82].

HSPA

HSPA stimulates suppressive activity of Tregs [83]. Im-
munisation with HSPA increases IL-10 production by Tregs, 
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down-regulates production of inflammatory cytokines, and 
affects the permeability of the epithelial barrier [84, 85]. 
HSPA confers its activity via TLR4-signaling pathway, 
which may be important for Foxp3 induction and suppres-
sion of inflammatory reactions [86]. Nevertheless, it has 
been demonstrated that HSPA does not interact directly with 
Foxp3 transcription factor [87]. Animal studies have shown 
that oral, nasal, intraperitoneal, or intradermal administra-
tion of HSPA significantly inhibits the development of the 
autoimmune arthritic model [88-91]. It was suggested that 
suppression of autoimmune response in experimental ani-
mals (rats with adjuvant-induced arthritis) was mediated by 
increased expansion of Tregs specific for HSPA, and the se-
cretion of anti-inflammatory IL-10 [89]. This also suggests 
the presence of antigen-specific Treg cells before immuni-
sation, which are probably generated at the time of positive 
selection in the thymus. This does not preclude that also 
HSPA-specific Tregs were induced in response to bacterial 
infection and the presence of commensal bacteria [90]. Bac-
terial HSPA is a highly immunogenic protein with a similar 
linear and spatial structure to the mammalian HSPA. There-
fore, T cells specific to bacterial HSPA seem to cross-react 
with human HSPA [52]. The immunosuppressive effect of 
Tregs specific to HSPA and activated in inflamed tissues 
was confirmed recently. It has been observed, namely, that 
B29 epitope of HSPA in conjunction with the murine MHC 
class II receptor was able to activate Tregs and led to clinical 
improvement in mice arthritis model [91].

HSPC

HSPC can be regulated by histone deacetylases 
(HDACs). HDAC6 causes decrease of Foxp3 expression via 
deacetylation of gene encoding this protein and incidentally 
Tregs function [92]. Moreover, HDAC6 or its downstream 
target, HSPC, can promote Treg-dependent suppression [93].
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